Рейтинговые книги
Читем онлайн ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Даглас Хофштадтер

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 116 117 118 119 120 121 122 123 124 ... 219

Ахилл: Да, это нетрудно. Но мне любопытно узнать, что это за свойство, для которого существует конечная, но непредсказуемая процедура проверки?

Черепаха: Это для меня слишком сложно, в особенности, когда я такая сонная. Лучше приведу вам пример свойства, которое весьма легко определить, но для которого неизвестна конечная процедура проверки. Заметьте, я не хочу сказать, что она никогда не будет открыта, — просто пока она еще не найдена. Для начала надо выбрать какое-нибудь число — предоставляю эту честь вам, Ахилл!

Ахилл: Как насчет 15?

Черепаха: Превосходно. Вы начинаете с вашего числа; если оно НЕЧЕТНО, вы умножаете его на три и прибавляете 1. Если оно ЧЕТНО, вы берете его половину. После этого мы повторяем процесс. Назовем число, которое таким образом рано или поздно превратится в 1, ИНТЕРЕСНЫМ, и число, которое не станет 1, НЕИНТЕРЕСНЫМ.

Ахилл: Интересное ли число 15? Посмотрим:

15 НЕЧЕТНО, так что я превращаю его в 3n + 1: 46

46 ЧЕТНО, так что я делю его на два: 23

23 НЕЧЕТНО, так что я превращаю его в Зn + 1: 70

70 ЧЕТНО, так что я делю его на два: 35

35 НЕЧЕТНО, так что я превращаю его в Зn + 1: 106

106 ЧЕТНО, так что я делю его на два: 53

53 НЕЧЕТНО, так что я превращаю его в Зn + 1: 160

160 ЧЕТНО, так что я делю его на два: 80

80 ЧЕТНО, так что я делю его на два: 40

40 ЧЕТНО, так что я делю его на два: 20

20 ЧЕТНО, так что я делю его на два: 10

10 ЧЕТНО, так что я делю его на два: 5

5 НЕЧЕТНО, так что я превращаю его в Зn + 1: 16

16 ЧЕТНО, так что я делю его на два: 8

8 ЧЕТНО, так что я делю его на два: 4

4 ЧЕТНО, так что я делю его на два: 2

2 ЧЕТНО, так что я делю его на два: 1.

Ух ты! Ничего себе путешествьице, от 15 до 1! Но я все же достиг цели. Это значит, что 15 обладает свойством «интересности». Хотелось бы узнать, какие числа НЕинтересные…

Черепаха: Вы заметили, что в этом простом процессе числа то возрастают, то уменьшаются?

Ахилл: Я особенно удивился, когда после 13 шагов я получил 16 — число, всего на 1 большее того , с которого я начал! В каком-то смысле, я почти вернулся к началу — но в другом смысле, я был весьма далек от начала. Странно и то, что чтобы решить задачку, мне пришлось добраться до 160. Интересно, почему так получилось?

Черепаха: Потому что потолок у этой задачки бесконечно высок, и заранее невозможно сказать, как высоко нам придется забраться. На самом деле, возможно, что вам придется все время карабкаться вверх, и вверх, и вверх, и никогда не спускаться больше, чем на несколько шагов.

Ахилл: Правда? Наверное, такое возможно — но что за странным совпадением это было бы! Для этого нам должны все время попадаться нечетные числа, за редким исключением. Сомневаюсь, чтобы такое было возможно, хотя, конечно, я не мог бы в этом поклясться.

Черепаха: Проверьте-ка число 27. Имейте в виду, я ничего не обещаю. Но все-таки попробуйте когда-нибудь — просто так, для развлечения. И я посоветовала бы вам запастись для этого большим листом бумаги.

Ахилл: Гммм… Интересно… Знаете, мне все еще кажется странным ассоциировать интересность (или неинтересность) с начальным числом, поскольку совершенно ясно, что это — свойство всей системы чисел.

Черепаха: Я понимаю, что вы имеете в виду, но это ничем не отличается от высказывания «29 — простое число» или «золото — дорогой металл». Оба утверждения приписывают единственному объекту свойство, которым тот обязан контексту целой системы.

Ахилл: Вы, наверное, правы. Проблема «интересности» весьма непроста, так как величина чисел все время колеблется, то возрастая, то уменьшаясь. Здесь ДОЛЖНА быть какая-то регулярность, хотя на вид это выглядит довольно хаотично. Прекрасно понимаю, почему еще никто до сих пор не нашел для «интересности» такой процедуры проверки, которая обязательно кончается.

Черепаха: Кстати о кончающихся и некончающихся процедурах — это мне напоминает об одном из моих друзей; он сейчас работает над своей книгой.

Ахилл: Ах, как занимательно! Как же она называется?

Черепаха: «Медь, серебро, золото — этот неразрушимый сплав». Не правда ли, звучит интересно?

Ахилл: Честно говоря, я что-то не совсем понимаю. Что общего между собой у меди, серебра и золота?

Черепаха: Это ясно, как день.

Ахилл: Вот если бы книга называлась «Гориллы, серебро, золото» или «Эму, золото…» — тогда бы я еще мог понять…

Черепаха: Может быть, вы предпочли бы «Медь, серебро, бабуины»?

Ахилл: Безусловно! Но это действительное название какое-то совсем слабенькое. Никто его не поймет.

Черепаха: Я скажу моему другу. Он (как и его издатель) будет только рад поменять название на более завлекательное.

Ахилл: Приятно слышать. Но почему наш разговор напомнил вам об этой книге?

Черепаха: Ах, да. Видите ли, там будет Диалог, в котором автор постарается запутать читателей, заставив их искать конец.

Ахилл: Забавно. Как же он это сделает?

Черепаха: Вы, безусловно, замечали, как некоторые писатели стараются наращивать напряжение поближе к концу своих историй — но читатель, держа книгу в руках, ЗНАЕТ, что рассказ подходит к концу. Таким образом, у него есть дополнительная информация, которая действует как предупреждение. Напряжение и неизвестность немного подпорчены физической сущностью книги. Было бы гораздо лучше, если бы в конце романов писатели оставляли прокладку потолще.

Ахилл: Прокладку?

Черепаха: Именно; я имею в виду кучу печатных страниц, не имеющих никакого отношения к истории, но маскирующих ее скорое окончание.

Ахилл: А-а, понятно. Таким образом конец истории может отстоять на, скажем, пятьдесят или даже сто страниц от последней страницы книги?

Черепаха: Да. Это привнесло бы некоторый элемент сюрприза, поскольку читатель не будет знать заранее, сколько страниц относятся к прокладке и сколько — собственно к истории.

Ахилл: Такая система была бы эффективной, если бы не есть одна проблема. Представьте себе, что ваша прокладка была бы очевидной — скажем, чистые страницы, куча «А» или случайные буквы. Тогда она была бы совершенно бесполезной.

Черепаха: Согласна. Она должна быть похожа на обычные печатные страницы.

Ахилл: Но даже беглого взгляда на страницу из какой-либо истории зачастую хватает, чтобы отличить ее от страницы из другой истории.

Черепаха: Это верно. Я всегда представляла это так: вы кончаете одну историю и тут же пишете еще что-то, что весьма похоже на продолжение — но в действительности это только прокладка, никак не соотносящаяся с вашей историей. Эта прокладка — что-то вроде «конца после конца». В ней могут быть странные литературные идеи, совершенно не имеющие отношения к первоначальной теме.

Ахилл: Ловко! Но тогда вам не удастся сказать, где находится действительный конец. Он сольется с прокладкой.

Черепаха: Вот и мы с моим другом-писателем пришли к такому же заключению. Жаль, эта идея мне очень нравилась.

Ахилл: Послушайте, у меня есть предложение. Переход между историей и прокладкой может быть написан таким образом, что внимательный читатель сможет сказать, где кончается одна и начинается другая. Может быть, ему придется над этим посидеть. Может быть, будет вообще невозможно предсказать, сколько времени это у него отнимет. Но издатель сможет дать гарантию, что достаточно тщательный поиск всегда придет к концу, даже если мы и не знаем наперед, как долго он будет продолжаться.

Черепаха: Прекрасно; но что означает «достаточно тщательный»?

Ахилл: Это значит, что читатель должен будет искать в тексте некую крохотную, но важную деталь, которая укажет на действительный конец. И ему придется исхитриться, чтобы среди множества подобных деталей найти настоящую.

Черепаха: Что-то вроде изменения частоты букв или длины слов? Внезапная россыпь грамматических ошибок?

Ахилл: Совершенно верно. Какое-то шифрованное послание, которое поможет внимательному читателю найти конец книги. Еще можно вывести новых персонажей или придумать события, несоответствующие остальной истории. Наивный читатель проглотит это, не задумываясь, в то время как умудренный опытом человек сможет точно указать, где проходит граница.

Черепаха: Какая оригинальная идея, Ахилл. Я расскажу о ней другу и, может быть, он захочет вставить ее в свой Диалог.

Ахилл: Этим он окажет мне честь.

1 ... 116 117 118 119 120 121 122 123 124 ... 219
На этой странице вы можете бесплатно читать книгу ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Даглас Хофштадтер бесплатно.

Оставить комментарий